Al-Farabi Kazakh National University Faculty of Physics and Technology Chair of Theoretical and Nuclear Physics

Syllabus Spring semester, 2017-2018 academic year

Academic course information

Discipline's	Discipline's	Type	No. of hours per week			Number of	ECTS
code	title		Lect.	Pract.	Lab.	credits	
TRB 7303	Technology of	Elective	2	1	0	3	5
	radiation safety						
Lecturer	Takibayev N.Zh., d.s.pm., academic		nic Office	hours	Scheduled		
	of NAS RK, professor						
e-mail	E-mail: takibayev@gmail.com						
Telephone	Telephone: 2925-133; 8-777-704-0396		96 Audito	ory	319		
number							

Academic	Type of course (theoretical, practical; basic, elective) and its purpose (role and		
	place of the course in the educational program): Technology of radiation safety		
presentation of the course			
the course	The aim of the course: to inform doctoral students about the theory of safety		
	with radiation elements or with nuclei, the theory of the characteristics of		
	radiation nuclei.*		
	A) be able to – demonstrate acquired knowledge (specifically) and it's		
	understanding; - demonstrate an understanding of the overall structure of the		
	study field and the relations between its elements (specifically);		
	B) be able to – include new knowledge in the context of basic knowledge,		
	interpret its contents; - analyze educational situation and offer direction to solve		
	it; - use methods (research, calculation, analysis, etc.) inherent to the field of		
	study (specifically) individually or in a group teaching and research activities;		
	C) be able to - synthesize, interpret and evaluate the learning outcomes of		
	discipline, modules, midterm exam content (specifically); D) he able to a constructive educational and assist interaction and association in		
	D) be able to – constructive educational and social interaction and cooperation in		
	the group; - propose to consider a problem, to reason its importance; - accept		
	criticism and to criticize; - work in a team;		
	E) be able to – recognize the role of taken course in the implementation of		
	individual learning paths. *The system of descriptor verbs must be used during		
	the formation of competences **Active and interactive methods is recommended		
	to ensure deeper understanding and learning of educational material and to		
	achieve learning out comes of the course (individual researches, group projects,		
D :::	case studies and there methods).		
Prerequisites	Organization and planning of research		
Post requisites	It is necessary in a future professional practice		
Information	Literature (with an indication of the authors and data output), the availability		
resources	(number), software and consumables with information about where you can get		
	them. (8-9)		
	Recommended:		
	1. Zanzonico P. Routine Quality Control of Clinical Nuclear Medicine		
	Instrumentation: A Brief Review. J Nucl Med. 2008;49(7):1114–1131		
	2. "Radiation". The free dictionary by Farlex. Farlex, Inc. Retrieved 2014-		

	01-11.				
	3. Moulder, John E. "Static Electric and Magnetic Fields and Human				
	Health".				
	Additional:				
	1. Mozumder, A., and Y. Hatano. Charged Particle and Photon Interactions				
	with Matter: Chemical, Physicochemical, and Biological Consequences				
	with Applications. New York: Marcel Dekker, 2004. Print.				
	2. Petrucci, Ralph H., William S. Harwood, F. Geoffrey. Herring, and Jeffry				
	D. Madura. General Chemistry: Principles and Modern				
	Applications. Upper Saddle River, N.J.: Pearson Education, 2007. Print.				
Academic	Academic Behavior Rules:				
policy of the	Compulsory attendance in the classroom, the impermissibility of late attendance.				
course in the	Without advance notice of absence and undue tardiness to the teacher is				
context of	estimated at 0 points.				
university	Academic values:				
moral and	Inadmissibility of plagiarism, forgery, cheating at all stages of the knowledge				
ethical values	control, and disrespectful attitude towards teachers. (The code of KazNU				
	Student's honor)				
Evaluation and	Criteria-based evaluation:				
attestation	Assessment of learning outcomes in correlation withdescriptors (verification of				
policy	competence formation during midterm control andexaminations).				
	Summative evaluation:				
	evaluation of the presence and activity of the work in the classroom; assessment				
	of the assignment, independent work of students, (project / case study / program				
	/)				
	The formula for calculating the final grade.				
	724 - 722				
	Final grade for the discipline = $\frac{IC1 + IC2}{2} \cdot 0.6 + 0.1MT + 0.3FC$				
	Below are the minimum estimates in percentage terms:				
	5% - 100%: A 90% - 94%: A-				
	85% - 89%: B+ 80% - 84%: B 75% - 79%: B-				
	70% - 74%: C+ 65% - 69%: C 60% - 64%: C-				
	55% - 59%: D+ 50% - 54%: D- 0% -49%: F				

Calendar (schedule) the implementation of the course content:

Wee	Topic title (lectures, practical classes, Independent work of	Number	Maximum	
ks	students)	of hours	score	
Module 1				
1	Lecture-1 (L-1). Introduction to Radiation	2	-	
	Seminar -1 (S-1). List of radiation elements and	1	5	
	characteristics			
2	L-2. Ionizing radiation: Ultraviolet radiation	2	-	
	S-2. X-ray	1	5	
3	L-3. Gamma, alpha, beta and radiation	2	-	
	S-3. Other Classifications of radiations	1	5	
	DSWT 1. Prepare the report: Classification of radiations	1	20	
4	L-4. Radioactivity in material	2	-	
	S-4. Types of radioactivity materials	1	5	
Module 2				
5	L-5. Working with radiation	2	-	

	S-5. Guiding principles	1	5
	DSWT 2. Guiding principles: Justification, Optimisation,	1	20
	limitation		
6	L6. Risk control when we work	2	-
	S6. Safety theory	1	5
7	L7. Physical Forms of Radiation	2	-
	S7. Future and developing technologies of radiation	1	5
	DSWT 3. Prepare the report: How to work with radioactive	1	25
	materials: emergency, security. mechanism		
	1stIntermediate Control (IC1)		100
8	Midterm (MT)		100
8	L-8. Nuclear Fission	2	-
	S-8. Nuiclear interactions	1	5
	Module 3		
9	L-9. Units of radiation intensity	2	-
	S-9. Biological effects of radiation.	1	5
	DSWT 4. Biological effects of radiation.	1	10
10	L-10. Radiation protection	2	-
	S-10. External/internal radiation exposure	1	5
11	L-11. Radiation Survey meters	2	-
	S-11. Dose rate meter	1	5
	DSWT 5. Types of Radiation Survey meters.	1	10
12	L-12. Laboratory rules	2	-
	S-12 Security	1	5
13	L-13. Emergency procedures	2	-
	S-13. Area decontamination	1	5
	DSWT 6. Prepare the report: Emergency procedures	1	20
14	L-14. Radioactive waste	2	-
	S-14. Classification of waste	1	5
15	L-15. Sum of the Radiation	2	-
	S-15. radiation worker	1	5
	DSWT 7. Prepare the report: How to work: emergency,	1	25
	security		
	2 nd Intermediate Control (IC2)		100
	Exam		100
	Total Independent work of students with teacher is 7 hours for		100

Note: Independent work of students with teacher is 7 hours for semester. 3, 5, 7, 9, 11, 13 and 15 weeksareincludedintosyllabus (assignmentsubmission)

Lecturer	TakıbayevN.Zh.
Head of the Department	Abishev M.E.
Chairman of the Faculty Methodical Bureau	A.T.Gabdullina A.T.